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Abstract The aim of this paper is to apply direct methods to the study of integrals that
appear naturally in Statistical Mechanics and Euclidean Field Theory. We provide weighted
estimates leading to the exponential decay of the two-point correlation functions for certain
classical convex unbounded models. The methods involve the study of the solutions of the
Witten Laplacian equations associated with the Hamiltonian of the system.
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1 Introduction

In this paper, we study partial differential equation techniques for problems coming from
equilibrium Statistical Mechanics and Euclidean Field theory. In the context of classical
equilibrium Statistical Mechanics, one is interested in a natural mathematical description of
an equilibrium state of a physical system which consists of a very large number of interacting
components.

We shall consider systems where each component is located at a site i of a crystal lattice
� ⊂ Z

d , and is described by a continuous real parameter xi ∈ R. A particular configuration
of the total system will be characterized by an element x = (xi)i∈� of the product space
� = R

�. This set � is called the configuration space or phase space.
We shall denote by � = �� the Hamiltonian which assigns to each configuration

x ∈ R
� a potential energy �(x). The probability measure that describes the equilibrium

of the system is then given by the Gibbs measure

dμ�(x) = Z−1
� e−�(x)dx.

Z� > 0 is a normalization constant.
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For any finite domain � of Z
d , we shall consider a Hamiltonian � of the phase space R

�,

satisfying conditions that will guarantee the solvability of the corresponding Witten Lapla-
cian equations which we will introduce below. Namely:

1. lim|x|→∞ |∇�(x)| = ∞.
2. For some M , any ∂α� with |α| = M is bounded on R

�.

3. For |α| ≥ 1, |∂α�(x)| ≤ Cα(1 + |∇�(x)|2)1/2 for some Cα > 0.
4. Hess� ≥ δ for some 0 < δ ≤ 1.

Here and in what follows, α = (αi)i∈� ∈ Z
|�|
+ shall denote a multiindex. We set |α| =

∑
i∈� αi , α! = α1! · · · αn!. If β = (βi)i∈� ∈ Z

|�|
+ and βj ≤ αj for all j ∈ �, then we write

β ≤ α. For α, β ∈ Z
|�|
+ such that β ≤ α, we put

(
α

β

) = α!
β!(α−β)! . If α = (αi)i∈� ∈ Z

|�|
+ and

x ∈ R
� we write xα =∏

i∈� xαi , and ∂α = ∂α1/∂x
α1
1 · · · ∂αm/∂xαm

m where m = |�|. Finally,
if i and j are two nearest neighbor sites in Z

d we write i ∼ j .

Definition 1 The lattice support, Sg of a function g on R
� is defined here to be the smallest

subset 	 of � ⊂ Z
d for which g can be written as function of xl alone with l ∈ 	. For

instance, if g = xi, Sg = {i}.

If g and h are suitable functions on R
� with lattice support Sg , Sh ⊂ � respectively, we

shall study the behavior of the covariance

cov(g,h) = 〈(g − 〈g〉�)(h − 〈h〉�)〉�
as d(Sg, Sh) → ∞. Here 〈·〉� is the ensemble average with respect to the Gibbs measure
Z−1

� e−��dx, and d(·, ·) is the usual distance in Z
d .

In particular, if g = xi and h = xj , we obtain the two-point correlation function

Cor�(i, j) = 〈(xi − 〈xi〉�)(xj − 〈xj 〉�)〉�.

This measures the correlation between local spin deviations occurring at the i-th and j -th
sites.

The exponential decay of Cor�(i, j) with respect to d(i, j) was proved by Helffer and
Sjöstrand [7] in the one dimensional case (d = 1) for models whose Hamiltonians are of the
form

�(m)(x) = x2

2
+ 
(x) x ∈ R

m,

with �(m) satisfying hypotheses 1–4 above. They indeed proved the following theorem.

Theorem 1 (Helffer-Sjöstrand [7]) Let

� = �(m)(x) = x2

2
+ 
(x) (1.1)

satisfy

|∂α∇
| ≤ Cα, ∀α ∈ Z
m
+, (1.2)

where α = (α1, . . . , αm) is a multiindex, and

Hess�(x) ≥ δ, for some 0 < δ < 1. (1.3)
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If in addition

‖Hess�(x)‖L(�∞
ρ ) ≤ C, (1.4)

(where all the constants are independent of the size of the lattice ring if nothing else is
indicated) for all ρ on Z/mZ satisfying

e−κ ≤ ρ(i + 1)

ρ(i)
≤ eκ, for some κ > 0,

and

‖Hess�(x) − I‖L(�∞
ρ ) ≤ δ < 1 (1.5)

where �∞
ρ is the weighted �∞-space defined by the norm

|x|�∞
ρ

= max
i

|ρ(i)xi |, (1.6)

then
∣
∣Cor(m)(i, j)

∣
∣≤ Cεe

−(κ−ε)distZ/mZ(i,j) (1.7)

for all m,ε > 0 and all pairs (i, j).

The proof of this theorem strongly relies on the one dimensional situation. The abstract
result in [7] was then illustrated by a mean field model introduced by Kac [9] whose Hamil-
tonian is given by

�(x) = x2

2
− 2

m∑

i=1

ln cosh

[√
β

2
(xi + xi+1)

]

(1.8)

with the convention xm+1 = x1.

In this paper, we propose to extend the result of Theorem 1 to higher dimensions (d > 1)

without introducing the technical assumptions

‖Hess�(x)‖L(l∞ρ ) ≤ C

and

‖Hess�(x) − I‖L(l∞ρ ) ≤ δ < 1.

We shall prove the following proposition.

Proposition 1 (The main result) Let � be a subset of Z
d (d ≥ 1). If

� = �(�)(x) = x2

2
+ 
(x) x = (xi)i∈� ∈ R

�

satisfies

Hess�(x) ≥ δ for some 0 < δ < 1, (1.9)

|∂α∇
| ≤ Cα, ∀α ∈ Z
|�|
+ (1.10)
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for some Cα > 0 where α = (α1, . . . , α|�|), and if there exists δ0 ∈ (0,1) such that

〈
a,M−1 Hess�(x)Ma

〉≥ δ0a
2 ∀x ∈ R

�,∀a ∈ R
� (1.11)

where M is the diagonal matrix

M = (
δij e

−κd(i,Sg)
)
i,j∈�

for some κ > 0, then for any smooth functions g and h satisfying (1.10) on R
Sg , and R

Sh

with Sg ∩ Sh = ∅ (Sg and Sh denote respectively the support of g and h as defined above),
we have

|cov(g,h)| ≤ Ce−κd(Sg,Sh) (1.12)

where C and κ are positive constants that do not depend on �, but possibly dependent on
the size of the supports of g and h.

Remark 1 The proof of this proposition is based on a weighted estimate of the solution of
the elliptic system

{
−�f + ∇� · ∇f = g − 〈g〉

L2(μ�)
,

〈f 〉L2(μ�) = 0.

We shall use the fact that the solution f satisfies ∂α∇f (x) → 0 as |x| → ∞ ∀α ∈ Z
|�|
+ . This

argument on the asymptotic behavior of f will be proved only in the case where �(x) =
x2

2 + 
(x) together with the assumption that both 
 and g are compactly supported. The
estimate will then be obtained in the general case by means of a family of cut-off functions.

The result of this proposition will be illustrated by the d-dimensional nearest neighbor
Kac model, where the potential is given by

�(x) = x2

2
− 2

∑

i,j∈�,i∼j

ln cosh

[√
β

2

(
xi + xj

)
]

, x = (xi)i∈� ∈ R
�,

for β > 0 smaller than some value β0 to be determined.
This result may also be viewed as an extension of some previous work of Sjöstrand-

Bach-Jecko [3], Bach-Moller [2] and Antoniouk-Antoniouk [1]. On the exponential decay
of the two-point correlations functions to a larger class of unbounded convex models whose
Hamiltonian are of the form

�(x) = x2

2
+ 
(x).

As mentioned in [1], the study of the exponential decay of correlations is rather com-
plicated in the cases of unbounded models because of the difficulties one might have to
apply Dobrushin uniqueness technique. Many results in this direction were obtained in the
case that the interaction potentials are quadratic. Antoniouk and Antoniouk [1] treated the
problem of the exponential decay of correlations in the case of nonquadratic polynomial
interactions with Hamiltonians of the type

H(x) =
∑

i∈Zd

(1 + x2
i )

2n+1 + λ
∑

i,j∈Zd

bi−j (xi − xj )
2n+2.
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Their methods are mainly based on Brascamp-Lieb inequality [5].
New methods have been recently developed for the study of the decay of correlations

through the analysis of Witten Laplacians on one forms [2, 3] and [8]. In [3], the authors
studied the exponential decay of correlations for models of the form

H�(x) =
∑

i∈�

f (xi) + λ
∑

i,j∈�

e−υd(i−j)wij (xi, xj )

where d(·) is a distance function and f and wij are C2 functions. (See [3] for more details.)
In [2], Bach and Moller improved the results in [3] by studying models of the type

H�(x) =
∑

i∈�

f (xi) + λ
∑

i,j∈�

wij (xi, xj ).

These authors treated the problem with several technical assumptions on Hamiltonians that
are restricted only to two body interactions. In this paper, we consider a more restrictive one
particle phase, but a more general many body potential. However, we believe that our result
may be generalized to a wider class of Hamiltonians that are not necessarily of Kac type.

As in [3, 7] and [2], our method is generally based on the analysis of suitable differential
operators

W(0)
� =

(

−�+|∇�|2
4

− ��

2

)

and

W(1)
� = −�+|∇�|2

4
− ��

2
+ Hess�.

These are in some sense deformations of the standard Laplace Beltrami operator. These
operators, commonly called Witten Laplacians, were first introduced by Edward Witten [14]
in 1982 in the context of Morse theory for the study of topological invariants of compact
Riemannian manifolds. In 1994, Bernard Helffer and Johannes Sjöstrand [7] introduced two
elliptic differential operators.

A
(0)
� := −� + ∇� · ∇

and

A
(1)
� := −� + ∇� · ∇ + Hess�.

These operators provide direct methods for the study of integrals in high dimensions of
the type that appear in Statistical Mechanics and Euclidean Field Theory. In 1996, J. Sjös-
trand [12] observed that these so called Helffer-Sjöstrand operators are in fact equivalent to
Witten’s Laplacians. Indeed,

W
(.)
� = e−�/2 ◦ A

(.)
� ◦ e�/2 (1.13)

and the map

U� : L2(R�) → L2(R�, e−�dx),

u �−→ e
�
2 u

is unitary.
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There have been significant advances in the use of these Laplacians to study the ther-
modynamic behavior of quantities related to the Gibbs measure dμ� = Z−1

� e−�dx. As a
simple illustration, if one is interested in the study of the mean value 〈g〉�, where

〈g〉� =
∫

gdμ�

and

dμ� = Z−1
� e−��dx

for a suitable smooth function g with g(0) = 0, one can first solve the equation

∇g = (−� + ∇� · ∇)v + Hess�v,

for v, where the operator

−� + ∇� · ∇
acts diagonally on each component of v.

If in addition to the assumptions (1.9), (1.10) on �, g satisfies (1.10) and if we assume
that both g and 
 are compactly supported, one can see that v is C∞ and satisfies ∂αv(x) →
0 as |x| → ∞ (see Corollary 3 below), and that ∂iv

j = ∂jv
i (see Proposition 3.1 in [7]).

Integrating equation

∇g = (−� + ∇� · ∇)v + Hess�v,

one sees that v is a solution of the system

g = 〈g〉� + v · ∇� − div v.

If it turns out that 0 is a critical point of �, then

〈g〉� = div v(0).

Thus, the study of the thermodynamic properties of the mean value is reduced to estimating
the derivatives of the solution v.

One of the most striking results is an exact formula for the covariance of two functions in
terms of the Witten Laplacian on one forms, leading to sophisticated methods for estimating
the correlation functions. This formula is in some sense a stronger and more flexible version
of the Brascamp-Lieb inequality [5]. The formula may be written as follow:

cov(g,h) =
∫ (

A
(1)−1

� ∇g · ∇h
)

e−�(x)dx. (1.14)

Recall that the Brascamp-Lieb inequality states that for an arbitrary function g ∈ C1(R�) ∩
L2(μ�), when the given measure dμ� = e−�dx has a real-valued, strictly convex C2-
potential � then

Var(g) = cov(g, g) ≤
∫
(
(Hess�)−1 ∇g · ∇g

)
e−�(x)dx. (1.15)

This is indeed an immediate consequence of formula (1.14). It only suffices to observe that

A
(1)−1

� ≤ (Hess�)−1 which follows from the fact that W
(0)
� = (−∂x + ∇�

2 )(∂x + ∇�
2 ) is a

positive operator.
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To understand the idea behind formula (1.14), let us recall that 〈f 〉� denotes the mean
value of f with respect to the measure dμ�. The covariance of two functions f and g is
defined by

cov(g,h) = 〈
(g − 〈g〉�)(h − 〈h〉�)

〉
�

. (1.16)

If one wants to have an expression of the covariance in the form

cov(g,h) = 〈∇h · w〉L2(Rn,Rn;dμ�) , (1.17)

for a suitable vector field w, we get, after observing that ∇h = ∇(h−〈h〉�), and integrating
by parts:

cov(g,h) =
∫

(h − 〈h〉�)(∇� − ∇) · wdμ�. (1.18)

This leads to the question of solving the equation

g − 〈g〉� = (∇� − ∇) · w. (1.19)

Now trying to solve this above equation with w = ∇u, we obtain the equation
{

g − 〈g〉� = A
(0)
� u,

〈u〉� = 0.
(1.20)

Assuming for now the existence of a smooth solution, we get by differentiation of this above
equation

∇g = A
(1)
� ∇u (1.21)

and the formula is now easy to see.
The proof of the main result is essentially based on the following proposition.

Proposition 2 Let g be a smooth function with lattice support 	 satisfying

|∂α∇g| ≤ Cα ∀α ∈ Z
|	|
+ (1.22)

and � satisfy (1.9)–(1.11). If f is the unique C∞-solution of the equation
{

−�f + ∇� · ∇f = g − 〈g〉L2(μ) ,

〈f 〉L2(μ) = 0,

then
∑

i∈�

f 2
xi
(x)e2κd(i,Sg) ≤ C ∀x ∈ R

�

where C and κ are positive constants. C could possibly depend on the size of the support of
g but does not depend on � and f .

Once this proposition is established, the statement of the main result will follow from
Cauchy-Schwartz inequality. Indeed, using formula (1.14) for the representation of the co-
variance, we have

|cov(g,h)| =
∣
∣
∣
〈
A

(1)−1

� ∇g·∇h
〉

�

∣
∣
∣
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= ∣
∣〈∇f ·∇h〉�

∣
∣

≤
∫ ∑

i∈�

∣
∣fxi

(x)eκd(i,Sg)e−κd(i,Sg)hxi

∣
∣dμ�(x)

≤
∫ (∑

i∈�

f 2
xi
(x)e2κd(i,Sg)

)1/2(∑

i∈Sh

h2
xi
(x)e−2κd(i,Sg)

)1/2

dμ�(x)

≤
[∫ ∑

i∈�

f 2
xi
(x)e2κd(i,Sg)dμ�(x)

]1/2[∫ ∑

i∈Sh

h2
xi
(x)e−2κd(i,Sg)dμ�(x)

]1/2

≤ √
C

[∫ ∑

i∈Sh

h2
xi
(x)dμ�(x)

]1/2

e−κd(Sh,Sg).

C is the same as in the statement of Proposition 2.
This paper is organized in seven sections.
In Sect. 2, we give an outline of the operators and equations involved in the Witten

Laplacian method.
In Sect. 3, we discuss preliminary results on Hilbert space methods for elliptic PDE’s.
In Sect. 4, we shall provide a rigorous discussion based on Hilbert space methods for the

solvability of the corresponding Witten Laplacian equations.
In Sect. 5, we illustrate the family of Hamiltonians discussed in Sects. 3 and 4 through

an example of the type introduced by Marc Kac [9]. We shall in fact prove that the solution
v = ∇u of (1.21) satisfies

lim
|x|→∞

∂αv(x) = 0 ∀α ∈ Z
|�|
+

if � is of the form x2

2 + 
(x) with both 
 and g compactly supported. This is due to
Helffer-Sjöstrand [7]. We shall then use this result in Sect. 6 to establish weighted estimates
leading to the exponential decay of the two-point correlation functions. Propositions 1 and 2
will be proved in this section where the assumptions of compact support on 
 and g will be
removed by means of cut-off arguments.

In Sect. 7, we shall apply our methods to the d-dimensional nearest neighbor Kac model,
and discuss possible physical implications of our result.

2 The Basic Equation

We shall first establish the solvability of the equation

{
A

(0)
� v = g − 〈g〉

L2(μ)
,

〈v〉L2(μ) = 0
(2.1)

by means of Hilbert space methods. The method consists in determining an appropriate
function space and an operator which is a natural realization of the problem. In this particular
problem, the function spaces to be considered are the Sobolev spaces Bk

�(R�) defined by

Bk
�(R�) = {

u ∈ L2(R�) : Z�
�∂αu ∈ L2(R�)∀� + |α| ≤ k

}
,
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where

Z� = |∇�|
2

. (2.2)

α = (α1, . . . , α|�|) ∈ Z
|�|
+ is a multiindex of order |α| = α1 + · · · + α|�|.

These are subspaces of the well known Sobolev spaces Wk,2(R�), k ∈ N.
The vital tool in the Hilbert space approach to elliptic boundary value problems is the

celebrated Lax-Milgram theorem. The essence of the method is the interpretation of the
problem as a variational problem involving a bilinear form defined in a natural way by the
problem and acting on the appropriately chosen function spaces.

In general, the Hilbert space method for elliptic differential equations uses the compact
embedding theorem for Sobolev spaces. This is a fundamental step in the method in order to
be able to apply the Fredholm alternative. See [6] or [13]. Since in the context of our problem
we are dealing with unbounded domains, the classical results regarding the compactness of
the embedding

Wk,p(�,dx) ↪→ Lp(�,dx) (2.3)

for suitable � are no longer valid. However, In the case that the Lp spaces are taken with
respect to the weighted measure e−�dx, with a suitable �, we have the following result due
to J.-M. Kneib and F. Mignot. See Lemma 5 in [10].

Lemma 1 If � satisfies the condition

∃θ ∈ (0,1) : lim
|x|→∞

(
θ |∇�(x)|2 − ��

)= ∞

then

H 1(μ�) ↪→ L2(R�,dμ�)

is compact.

Here and in the sequel, dμ� will denote the Gibbs measure

dμ = Z−1
� e−�dx,

Z� =
∫

R�

e−�dx,

and Hk(μ�) denotes the weighted Sobolev space

Hk(μ�) = {
u ∈ L2(R�,dμ�) : ∂αu ∈ L2(R�,dμ�)∀ |α| ≤ k

}
.

Proof We shall prove that every bounded sequence in H 1(μ�) has a convergent subse-
quence in L2(R�,dμ�). Let {uk} ⊂ H 1(μ�) = H 1(R�,dμ�) be such that

‖uk‖H 1
μ

≤ √
M for every k and some M > 0.

For any R > 0, denote by B(0,R) the open ball centered at 0 with radius R. It is
clear that H 1(R�,dμ�) ⊂ H 1(B(0,R), dμ�). Hence {uk} is a bounded sequence in
H 1(B(0,R), dμ�). Moreover
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∫

B(0,R)

u2
kdx +

∫

B(0,R)

|Duk|dx

≤ C�,R

[∫

B(0,R)

u2
ke

−�dx +
∫

B(0,R)

|Duk| e−�dx

]

.

This implies that {uk} is a bounded sequence in H 1(B(0,R)). Now using the stan-
dard Sobolev compactness embedding theorem for bounded domains with nice boundary
(see [6]), we get the compactness of the embedding

H 1(B(0,R)) ↪→ L2(B(0,R)).

Therefore, one can find a subsequence {ukj
} of {uk} such that ukj

converges in L2(B(0,R)).

We shall prove that {ukj
} is Cauchy in L2(R�,dμ�). Let η > 0. The assumption of the

lemma implies that

ζ := |∇�|2 − (1 + η)�� (2.4)

is positive in a neighborhood of ∞ when θ = (1 + η)−1

∫

R�

|ukj −ukl
|2e−�dx

≤
∫

|x|<R

|ukj −ukl
|2e−�dx +

∫

|x|≥R

ζ |ukj −ukl
|2

infR�\B(0,R) ζ
e−�dx

≤ C�

∫

|x|<R

|ukj −ukl
|2dx +

∫

|x|≥R

ζ |ukj −ukl
|2

infR� \ B(0,R) ζ
e−�dx. (2.5)

To estimate the last term of the right hand side of this last above inequality, let ε > 0 and
choose R large enough so that

inf
R�\B(0,R)

ζ ≥ 4M(2 + η + η−1)

ε
.

Now introduce the vector fields

Xj = ∂j (2.6)

and their formal adjoint in L2(μ)

X∗
j = −∂j + �xj

, (2.7)

one has when u ∈ C∞
0 (R�) for their sum and commutator

(
Xj + X∗

j

)
u = �xj

u (2.8)

and

[Xj,X
∗
j ]u = �xj xj

u. (2.9)

It is then straightforward to see that
([

Xj,X
∗
j

]
u,u

)

μ� = ∥
∥X∗

j u
∥
∥2

μ� − ∥
∥Xju

∥
∥2

μ� , (2.10)

∥
∥
(
Xj + X∗

j

)
u
∥
∥2

μ� ≤
(

1 + 1

η

)
∥
∥Xju

∥
∥2

μ� + (1 + η)
∥
∥X∗

j u
∥
∥2

μ� , ∀ε > 0 (2.11)
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so that a linear combination of these formulae gives for any η > 0
(
(|∇�|2 − (1 + η)��)u,u

)
μ�

≤ (2 + η + η−1)
(
‖X1u‖2

μ� + · · · + ‖Xmu‖2
μ�

)
. (2.12)

Thus,

(ζu,u)μ� ≤ (2 + η + η−1)‖u‖2
H 1(μ�)

. (2.13)

Because C∞
0 (R�) is dense in H 1(μ�), this inequality is valid for all u ∈ H 1(μ�). Now

applying (2.13) with u replaced by ukj −ukl
, (2.5) gives

∫

R�

∣
∣ukj −ukl

∣
∣2 e−�dx ≤ C�

∫

|x|<R

∣
∣ukj −ukl

∣
∣2 dx +

(2 + η + η−1)‖ukj −ukl
‖2

H 1(μ�)

4M(2 + η + η−1)
ε

≤ C�

∫

|x|<R

∣
∣ukj −ukl

∣
∣2 dx + ε.

The result follows from the convergence of the subsequence {ukj
} in L2(B(0,R)). �

3 Preliminary Results on Hilbert Space Methods for Elliptic PDE

A bilinear form with domain H, a complex Hilbert space, is a complex-valued function a

defined on H × H which is such that a(u, v) is linear in u and conjugate linear in v. The
inner product (·, ·)H on H is clearly a bilinear form; we shall denote it by 1(·, ·). The form
a + λ1 will simply be denoted by a + λ:

(a + λ)(u, v) = a(u, v) + λ(u, v)H .

The adjoint a∗ of a is defined by

a∗(u, v) = a(v,u)

and a is said to be symmetric if a ≡ a∗, i.e. for all u,v ∈ H

a∗(u, v) = a(v,u) = a(u, v).

A bilinear form is said to be bounded on H × H if there exists a constant M > 0 such that

|a(u, v)| ≤ M ‖u‖H ‖v‖H for all u,v ∈ H.

A bilinear form a is said to be coercive on H if there exists a positive constant m > 0 such
that

|a(u,u)| ≥ m‖u‖2
H for all u ∈ H.

We shall say that a Banach space W is continuously embedded in a Banach space X

if there is a bounded operator E : W → X which is one-to-one. We call E an embedding
operator. We shall say that W is densely embedded in X if R(E), the range of E is dense
in X; and we shall write

W ↪→E
ds X.
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If X is a Banach Space, the set of all linear conjugate functionals on X shall be denoted
by X∗ and is called the conjugate space of X∗.

Suppose X,Y,W,Z are Banach spaces such that

W ↪→E
ds X and Y ↪→F

ds Z∗.

Let a(w, z) be a bounded bilinear form on W × Z. We can define two linear operators
connected with a(w, z). The first which we shall denote by A, is an operator from X to Y .
We say that x ∈ D(A), the domain of A and Ax = y if x ∈ R(E), y ∈ Y and

a(E−1x, z) = Fy(z), for all z ∈ Z.

Since R(F) is dense in Z∗, the operator A is well defined. We call A the operator associated
with the bilinear form a(u, v).
The second operator, which we denote by Â, is from W to Z∗. We define it as follows.
Fix w ∈ W, a(w, ·) ∈ Z∗, it is bounded because the bilinear form a is bounded. We define
Âw to be a(w, ·). Â is clearly well defined and will be called the extended linear operator
associated with the bilinear form a(u, v). It can be shown that A and Â are related in the
following way:

A = F −1ÂE−1.

The fundamental tool to investigate the operator Â is the Lax, Milgram Theorem.

Theorem 2 (Lax Milgram) Let a be a bounded coercive form on a Hilbert space H0 with
bounds m and M as above. Then for any F ∈ H ∗

0 , the adjoint of H0, there exists a u ∈ H0

such that

a(u, v) = 〈F,v〉 for all v ∈ H0.

The map Â : u �→ F defined above is a linear bijection of H0 onto H ∗
0 and

m ≤ ∥
∥Â
∥
∥≤ M, M−1 ≤ ∥

∥Â−1
∥
∥≤ m−1.

Proof See [6]. �

Corollary 1 For any choice of F ∈ H ∗
0 there is a unique vector u ∈ H0 satisfying

(u, v)H0 = F(v) for all v ∈ H0,

moreover, the isomorphism Â−1 from H ∗
0 onto H0 defined by Â−1F = u verifies

∥
∥Â−1F

∥
∥

H0
= ‖F‖H∗

0
.

Next, we apply the Lax-Milgram Theorem to the situation where the Hilbert space H0 is
continuously and densely embedded in another Hilbert space H .

Lemma 2 If H is a Hilbert space and W is a Banach space continuously and densely
embedded in H with embedding operator E, then H can be continuously and densely em-
bedded in W ∗ with embedding operator F satisfying

(x,Ew)H = Fx(w), x ∈ H, and w ∈ W.
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Proof For each x ∈ H, the function x∗ : w �→ (x,Ew)H is a conjugate linear functional on
W and

|x∗(x)| ≤ ‖x‖H‖E‖‖w‖W .

Hence x∗ ∈ W ∗. Define the operator F from H to W ∗ by Fx = x∗. Clearly, F is linear and
bounded. It is also one-to-one since R(E) is dense in H. Finally, suppose x∗(w) = 0 for all
x∗ ∈ R(F). Then (x,Ew)H = 0 for all x ∈ H. Thus Ew = 0 and consequently w = 0. This
shows that R(F) is dense. �

Now let the Hilbert space H0 be continuously and densely embedded into another Hilbert
space H with embedding operator E. By the lemma above, H can be continuously and
densely embedded in H ∗

0 with embedding operator F. We obtain the scheme

H0 ↪→E
ds H ↪→F

ds H ∗
0

which is referred to by saying that (H0,H,H ∗
0 ) is a Hilbert triplet. Notice also that if the

embedding E is compact, then so is the embedding

H0 ↪→FE H ∗
0 .

Returning to the bilinear form on H0, we weaken the notion of coerciveness as follows: We
say that a bilinear form a(u, v) on H0 is coercive relative to H , if there exists some λ > 0
such that aλ(u, v) = a(u, v) + λ(u, v)H is coercive, i.e.

a(u,u) + λ‖u‖2
H ≥ α0 ‖u‖2

H0
for u ∈ H0 and some α0 > 0.

If this last inequality above holds, then by the Lax-Milgram Theorem, the extended linear
operator Âλ associated with the bilinear form aλ(u, v) has a bounded inverse Â−1

λ : H ∗
0 →

H0, moreover Âλu = Âu + λB̂u, where Â is the extended operator associated with the
bilinear form a(u, v) and B̂ the extended operator associated with the inner product (u, v)H .

Now let q ∈ H ∗
0 and consider the equation

u ∈ H0, Âu = q (3.1)

(3.1) can now be written as

u ∈ H0, u − λÂ−1
λ B̂u = z (3.2)

with z = Â−1
λ q . We now claim that the compactness of the embedding E implies that of the

operator Â−1
λ B̂ : H0 → H0 is compact. Indeed this follows from the fact that B̂ is bounded

and Â−1
λ : H ∗

0 → H0 is compact. By the Fredholm alternative (see Theorem 4 below), (3.2)
is uniquely solvable for any choice of z ∈ H0 if and only if u = 0 is the unique vector of H0

satisfying u − λÂ−1
λ B̂u = 0. When this is the case, the linear operator z �−→ u defined by

(3.2) is bounded from H0 to H0. Summarizing, we have the following theorem.

Theorem 3 Let (H0,H,H ∗
0 ) be a Hilbert triplet with H0 compactly embedded in H , let

a(u, v) be a bounded bilinear form on H0 coercive relative to H. Then

u ∈ H0, a(u, v) = q(v) for v ∈ H0
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admits a unique solution u for any choice of q ∈ H ∗
0 if and only if it admits a unique solution

u = 0 for q = 0 in which case the solution u satisfies

‖u‖H0 ≤ C‖q‖H0

with C dependent only on Â.

Theorem 4 (Fredholm alternative) Let T be a compact linear operator on a Hilbert space
V and consider the equations

u ∈ V, u − T u = f, (3.3)

v ∈ V, v∗ − T ∗v∗ = g (3.4)

where T ∗ the adjoint operator of T . Then the following alternative holds:

(i) either there exists a unique solution of (3.3) and (3.4) for any f and g in V, or
(ii) the homogeneous equation

u − T u = 0

has nontrivial solutions. In that case the dimension of the null space of I − T is finite
and equals the dimension of the null space N ∗ of I − T ∗. Furthermore (3.3) and (3.4)
have (non unique) solutions if and only if

〈
f, v∗〉= 0, ∀v ∈ N ∗

and

〈g, v〉 = 0, ∀v ∈ N

N being the null space of I − T .

Proof See Yosida [15] (X–§5). �

4 Solvability and Regularity of the Basic Equation

Theorem 5 Let � be a finite domain in Z
d . If � satisfies

1. lim
|x|→∞

|∇�(x)| = ∞.

2. For some M, any ∂α� with |α| = M is bounded on R
�.

3. For |α| ≥ 1, |∂α�(x)| ≤ Cα(1 + |∇�(x)|2)1/2 for some Cα > 0.
4. Hess� ≥ δ for some 0 < δ ≤ 1,

then for any C∞-function g satisfying

|Dαg| ≤ Cα(1 + Z�)qα (4.1)

where

Z� = |∇�|
2

,
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α ∈ N
|�| with some Cα and some qα > 0, there exists a unique C∞-vector field v solution of

{
A

(0)
� v = g − 〈g〉

L2(μ�)
,

〈v〉L2(μ�) = 0.
(4.2)

Proof (Existence) We shall work in the unweighted space L2(R�) and with the Witten-
Laplacians ensuing after the unitary transformation. Under the unitary transformation,

A
(0)
� v = g − 〈g〉L2(μ�) in R

�

is equivalent to

W(0)
� u = q in R

�

where

u = e−�/2v and q = e−�/2
(
g − 〈g〉

L2(μ�)

) ∈ L2(R�).

Recall that

Bk
�(R�) = {

u ∈ L2(R�) : Zl
�∂αu ∈ L2(R�)∀l + |α| ≤ k

}

where ∂αu is taken in the distributional sense in R
�.

Denote by B1
0,�(R�) the closure of C∞

0 (R�) in B1
�(R�), and let b be the bilinear form

on B1
0,�(R�) defined by

b : B1
0,�(R�) × B1

0,�(R�) → R

with

b(u,w) =
∫

R�

Du · Dwdx +
∫

R�

( |∇�|2
4

− ��

2

)

uwdx.

Because we have in mind to apply Theorems 3 and 4 above, we need to check boundedness
and coerciveness of b.

Boundedness: After observing that

�� ≤ C(1 + |∇�|2)1/2 ≤ C(1 + |∇�|2),

it then follows immediately from Cauchy-Schwartz inequality that

|b(u,w)| ≤ α0 ‖u‖B1
�(R�) ‖w‖B1

�(R�)

for some constant α0 > 0.

Coerciveness:

∫

R�

|Du|2 dx = b(u,u) −
∫

R�

( |∇�|2
4

− ��

2

)

|u|2 dx,

∫

R�

|Du|2 dx +
∫

R�

|Z�u|2 dx = b(u,u) +
∫

R�

��

2
|u|2 dx

≤ b(u,u) + ε

∫

R�

(��)2

4
|u|2 dx + 1

4ε

∫

R�

|u|2 dx
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≤ b(u,u) + Cε

∫

R�

|Z�u|2 dx +
(

Cε + 1

4ε

)∫

R�

|u|2 dx

choosing ε such that Cε < 1 and adding
∫

R� |u|2dx on both side of this above inequality,
we immediately get

δ ‖u‖2
B1

�(R�)
≤ b(u,u) + γ ‖u‖2

L2(R�)
(4.3)

for some positive constants δ and γ .
This shows that the bilinear form b(u, v) is bounded and coercive relative to L2(R�).

Observe that B1
0,�(R�) is densely embedded into L2(R�). Now considering the Hilbert

triplet
(
B1

0,�(R�),L2(R�),B−1
0,�(R�)

)
, (4.4)

where B−1
0,�(R�) denote the conjugate space of B1

0,�(R�).
We need to check that the embedding

B1
0,�(R�) ↪→ L2(R�)

is compact. This follows from Lemma 1 by simply observing that

B1
0,�(R�) ⊂ U−1

�

(
H 1(μ)

)

and the fact that U� is a unitary operator.
Let Bγ be the bilinear form in B1

0,�(R�) defined by

Bγ (u,w) = b(u,w) + γ 〈u,w〉L2(R�)

and

Âγ : B1
0,�(R�) → B−1

0,�(R�)

be the extended linear operator associated with the bilinear form Bγ (u,w). We have

Âγ u = Âu + γ B̂u, (4.5)

where Â and B̂ are the bounded bilinear forms associated with b and (·, ·)L2 respectively.
Note that the equation

u ∈ B1
0,�(R�), Âu = q

is the variational interpretation of the equation

W(0)
� u = q in R

�.

By Theorem 2 (Lax-Milgram), the boundedness of Bγ and the coercivity condition

Bγ (u,u) ≥ δ ‖u‖2
B1(R�)

∀u ∈ B1
0,�(R�)

guarantee that Aγ has a bounded inverse

Â−1
γ : B−1

0,�(R�) → B1
0,�(R�).
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Now using the fact that

Âγ u = Âu + γ B̂u,

we can write the equation

u ∈ B1
0,�(R�), Âu = q

as

u ∈ B1
0,�(R�), u − γ Â−1

γ B̂u = z (4.6)

where

z = Â−1
γ q. (4.7)

As in the preliminary, because the injection

B1
0,�(R�) ↪→ L2(R�)

is compact, the operator γ Â−1
γ B̂ : B1

0,�(R�) → B1
0,�(R�) is compact. Moreover, the bound-

edness of γ Â−1
γ B̂ implies that

(
γ Â−1

γ B̂
)∗ =

(
γ
(
B̂−1

γ Âγ

)∗)−1

= γ
(
Â∗

γ

(
B̂−1

)∗)−1

= γ

(

Â∗
γ

(
B̂∗
)−1

)−1

= γ Â−1
γ B̂. (4.8)

Let us also point out that the self-adjointness of Âγ and B̂ follow from the fact that they are
both associated with symmetric bilinear forms.
Now observe that

ker(I − γ Â−1
γ B̂) ⊂ ker Â. (4.9)

We now claim that

ker Â = {
δe−�/2, δ ∈ R

}
. (4.10)

Indeed if Âu = 0 , then b(u,u) = 0. Hence

∥
∥
∥
∥

(

∂x + ∇�

2

)

u

∥
∥
∥
∥

2

L2
= 0

which would imply that u is a solution of the equation

(

∂x + ∇�

2

)

u = 0.

One can then easily see u must be a constant multiple of e−�/2. We have in mind to apply
the second part of Theorem 4 (Fredholm alternative). This brings us to check orthogonality
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of q with ker(I − γ Â−1
γ B̂). Let δ ∈ R,

〈
δe−�/2, q

〉
L2(R�)

=
∫

R�

δe−�/2e−�/2
(
g − 〈g〉

L2(μ�)

)

= δ
(〈g〉

L2(μ�)
− 〈g〉

L2(μ�)

)= 0. (4.11)

Hence using part (ii) of Theorem 4, we conclude that the equation

Âu = q (4.12)

is solvable therefore

A
(0)
� v = g − 〈g〉

L2(μ�)
(4.13)

is solvable in the weak sense. To complete the proof of Theorem 4, we need to prove that
the L2-solution constructed above is a classical solution.

Regularity: Next, we shall prove that the weak solutions constructed above are actually
classical solutions. The proof is based on the method of difference quotient.

Theorem 6 (Bk-regularity) Given q ∈ Bk−1
� (R�) for k = 0,1,2, . . . , a solution u ∈

B1
0,�(R�) of

Âu = q (4.14)

is an element of Bk+1
� (R�) and we have the estimate

‖u‖
Bk+1

� (R�)
≤ C

[∥
∥
∥Âu

∥
∥
∥

Bk−1
� (R�))

+ ‖u‖Bk
�(R�)

]

(4.15)

for all u ∈ Bk+1
� (R�).

Proof We first establish the result when k = 0. We have

(
��

2
u,u

)

L2
≤
∥
∥
∥
∥
��

2
u

∥
∥
∥
∥

L2(R�)

‖u‖L2(R�)

≤ C ‖u‖B1
�(R�) ‖u‖L2(R�)

≤ εC ‖u‖2
B1

�(R�)
+ C

4ε
‖u‖2

L2(R�)
. (4.16)

Thus, for u ∈ B1
0,�(R�),

〈
Âu,u

〉
= ‖Du‖2

L2(R�)
+ (

Z2
�u,u

)
L2 −

(
��

2
u,u

)

L2

≥ ‖Du‖2
L2(R�)

+ ‖Z�u‖2
L2(R�)

− εC ‖u‖2
B1

�(R�)
− C

4ε
‖u‖2

L2(R�)
.

Choosing ε such that εC < 1, we get

〈
Âu,u

〉
≥ C ‖u‖2

B1
�(R�)

− C ‖u‖2
L2(R�)

.
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Hence

‖u‖2
B1

�(R�)
≤ C

〈
Âu,u

〉
+ C ‖u‖2

L2(R�)

≤ C

∥
∥
∥Âu

∥
∥
∥

B−1
� (R�)

‖u‖B1
�(R�) + C ‖u‖2

L2(R�)

≤ C

4ε

∥
∥
∥Âu

∥
∥
∥

2

B−1
� (R�)

+ Cε ‖u‖2
B1

�(R�)
+ C ‖u‖2

L2(R�)
.

Again choosing ε appropriately (εC < 1) we finally get

‖u‖2
B1

�(R�)
≤ C

∥
∥
∥Âu

∥
∥
∥

2

B−1
� (R�)

+ C ‖u‖2
B0

�(R�)
.

Now assume that for u ∈ B1
0,�(R�), Âu = q ∈ Bk−1

� (R�) implies u ∈ Bk+1
� (R�) and that

‖u‖
Bk+1

� (R�)
≤ C

[∥
∥
∥Âu

∥
∥
∥

Bk−1
� (R�))

+ ‖u‖Bk
�(R�)

]

. (4.17)

Suppose now that u ∈ B1
0,�(R�), Âu ∈ Bk

�(R�). So we know that u ∈ Bk+1
� (R�) and we

want to establish that u ∈ Bk+2
� (R�).

Because

Dh
i u = u(x + hei) − u(x)

h
∈ Bk+1

� (R�),

replacing u by Dh
i u in inequality (4.17) we get

∥
∥Dh

i u
∥
∥

Bk+1
� (R�)

≤ C

[∥
∥
∥ÂDh

i u

∥
∥
∥

Bk−1
� (R�)

+ ∥
∥Dh

i u
∥
∥

Bk
�(R�)

]

≤ C

[∥
∥
∥D−h

i Âu

∥
∥
∥

Bk−1
� (R�)

+ ∥
∥uDh

i X�

∥
∥

Bk−1
� (R�))

+ ∥
∥Dh

i u
∥
∥

Bk
�(R�)

]

where

X� := |∇�|2
4

− ��

2
.

Now letting h → 0 and using assumption 3 on � we get

‖Diu‖
Bk+1

� (R�)
≤ C

[∥
∥
∥Âu

∥
∥
∥

Bk
�(R�)

+ ‖u‖Bk
�(R�)) + ‖u‖

Bk+1
� (R�)

]

it then follows that

Diu ∈ Bk+1
� (R�).

It then only remains to prove that Zk+2
� u ∈ L2(R�). To see this first observe that

Z2
�u = Âu + �u + ��

2
u. (4.18)
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The Laplacian here is taken in the distributional sense. Multiplying by Zk
� on both sides of

this last equality, we obtain:

Zk+2
� u = Zk

�Âu + Zk
��u + Zk

�

��

2
u. (4.19)

The first term of this equality is in L2(R�) because Âu ∈ Bk
�(R�). That the second terms

also belongs to L2(R�) follows from the fact that Diu ∈ Bk+1
� (R�). Finally to see that the

last term is an element of L2(R�), we use assumption 3 on � to get that

��

2
≤ C

(
1

4
+ Z2

�

)1/2

≤ C

(
1

2
+ Z�

)

, (4.20)

and use the fact that u ∈ Bk+1
� (R�). �

Proposition 3 (C∞-regularity) The weak solution u of W
(0)
� u = q is an element of C∞(R�).

The proof of this proposition uses the general Sobolev inequalities theorem given below.

Theorem 7 (General Sobolev inequality) Let U be a bounded open subset of R
n, with a

C1-boundary. Assume u ∈ Wk,p(U) where

Wk,p(U) := {
u ∈ L1

loc(R
n) : ∂αu ∈ Lp (Rn) ∀ |α| ≤ k

}
.

If

k >
n

p

then u ∈ C
k−[ n

p ]−1,γ
(Ū ), where

γ =
{[

n
p

]+ 1 − n
p
, if n

p
is not an integer,

any positive number < 1, if n
p

is an integer.

Here Ck,α(Ū) is the Hölder space consisting of all functions u ∈ Ck(Ū) such that

‖u‖Ck,α(Ū) :=
∑

|β|≤k

sup
x∈U

∣
∣∂βu(x)

∣
∣+

∑

|β|=k

sup
x,y∈U
x �=y

∣
∣
∣
∣
∂βu(x) − ∂βu(y)

|x − y|α
∣
∣
∣
∣< ∞.

Proof See [6]. �

Proof of Proposition 3 Because q ∈ C∞(R�), we have u ∈ Bk
loc(R

�)∀k, which implies
u ∈ Hk(V )(= Wk,2(V ))∀k and ∀V � R

�. Now choose k ∈ N such that k > |�|. Then the
theorem above implies that u ∈ Ck,γ (V̄ ) for some 0 < γ < 1. Consequently, u ∈ Ck(V ) for
an arbitrary big enough k and for any V � R

�. �

Now that we have enough smoothness, we can make the following remark which com-
pletes the proof of Theorem 6.
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Remark 2 (End of proof of Theorem 5) A simple integration by parts argument shows that
u is in fact a strong solution. It satisfies

W
(0)
� u = q

pointwise almost everywhere. Using the unitary transformation and taking gradient on both
sides of

A
(0)
� v = g − 〈g〉

L2(μ�)
,

we get

A
(1)
� ∇v = ∇g.

If q is a smooth vector field satisfying

|∂αq| ≤ Cα(1 + Z�)qα for some qα > 0, (4.21)

then one can show as above (this time using uniqueness result of the Fredholm alternative)
that the equation

A
(1)
� v = q

has a unique weak solution A
(1)
� ∇v = ∇g would then imply that two solutions of

A
(0)
� v = g − 〈g〉

L2(μ�)
(4.22)

must differ by a constant. Thus the problem

{
A

(0)
� v = g − 〈g〉L2(μ�) ,

〈v〉L2(μ�) = 0

has a unique solution. This ends the proof of Theorem 5. �

5 The Kac-like Model

In this section, we propose to illustrate the results above through the study of a more specific
family of classical unbounded spin model related to Statistical Mechanics, given by

�(x) = ��(x) = x2

2
+ 
(x), x ∈ R

�. (5.1)

Here we have used the notation x2 = x · x.
The model that was originally suggested by M. Kac [9] corresponds to the case that 
 is

given by


(x) = −2
∑

i,j∈�,i∼j

ln cosh

[√
β

2

(
xi + xj

)
]
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where β is a small positive constant. This case will be studied in more detail in Sect. 7. In
this section, we will discuss the asymptotic behavior of the solution of the equation

{
−�v + ∇� · ∇v = g − 〈g〉L2(μ�) ,

〈v〉L2(μ�) = 0
in R

�

when both 
 and g are compactly supported. Let us mention that these assumptions will be
relaxed later for the purpose of the main result.

Other aspects of this family of potentials are studied in [7] in the one dimensional case.
Under the assumptions

|∂α∇
| ≤ Cα, ∀α ∈ N
|�|, (5.2)

Hess� ≥ δ > 0, 0 < δ < 1, (5.3)

one can check that � satisfies the assumptions 1–4 as required in Theorem 5.
Let g be a smooth function on R

	 where 	 is a fixed subset. We shall use the notation

x� = (xi)i∈�

if � is a proper subset of � and shall also assume that Sg = 	. Now define the function g̃

on R
� by

g̃(x) = g(x	), x ∈ R
�.

If there is no ambiguity we shall identify g̃ with g.
We propose to prove that if in addition to the assumptions above on �, the functions 
 and
g are compactly supported and g satisfies,

|∂α∇g| ≤ Cα, ∀α ∈ N
|�|,

then the solution v of the equation

{
−�v + ∇� · ∇v = g − 〈g〉L2(μ�) ,

〈v〉L2(μ�) = 0
in R

� (5.4)

constructed in Sect. 4 satisfies

∂α∇v(x) → 0 as |x| → ∞, ∀α ∈ N
|�|. (5.5)

Recall that under a suitable change of variables, the equation

A
(1)
� v = ∇g (5.6)

could be written as
(

−�+|∇�|2
4

− ��

2

)

⊗ u + Hess�u = q (5.7)

where

u = e−�/2∇v and q = e−�/2∇g. (5.8)
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Let B1 = BR1(0) ⊂ R
� denote a large ball centered at zero with radius R1 and containing

the support of 
 in R
�. We also consider a ball B2 = BR2(0) ⊂ R

	 of radius R2 > R1

containing the support of g in R
	. The support of g̃ in R

� is then contained in the cylinder

B = B2 × R
�\	.

Since B contains the support of 
, in Bc = R
�\B we have

{
(−� + x2

4 − m
2 + I)u = 0 in Bc,

u = ϕ on ∂B (in the trace sense).
(5.9)

Here ϕ is a C∞-vector field on ∂B and m = |�|.
Since the operator

−� + x2

4
− m

2
+ I (5.10)

acts diagonally on u, we can work component by component and the situation is reduced to
the scalar case

{
(−� + x2

4 − m
2 + 1)u = 0 in Bc,

u = ϕ on ∂B (in the trace sense).
(5.11)

Having reduced the problem to a Dirichlet type for the Schrödinger operator

−� + x2

4
− m

2
+ 1, (5.12)

we shall need some results on the decay of eigenfunctions of the corresponding Schrödinger
operator. We need the following lemma:

Lemma 3 The fundamental solution E ∈ S ′(R�) of the operator −�+k2(k > 0) exists and
is unique. It is spherically symmetric, is an element of C∞(R�\{0}) and has the following
asymptotics as |x| → ∞:

E(x) = C|x|( m−1
2 )e−k|x|(1 + o(1)). (5.13)

In the lemma, S ′(R�) denotes the space of tempered distributions on R
�.

Proof Consider the equation

(−� + k2
)
E(x) = δo(x). (5.14)

Taking Fourier transform, we get

̂
(−� + k2

)
E(x) = δ̂o(x) (5.15)

equivalently
(
x2 + k2

)
Ê(x) = (2π)−m/2 (5.16)
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which implies

Ê(x) = (2π)−m/2

x2 + k2
. (5.17)

The uniqueness and spherical symmetry follow since

E(x) = (2π)−m/2 ̂̂E(x). (5.18)

Furthermore, if x �= 0, the smoothness of E(x) follows from the regularity theory of the
elliptic equation as discussed above in Sect. 4.

(−� + k2
)
E(x) = 0 in R

�\{0} (5.19)

for x �= 0 set E(x) = f (r) where f ∈ C∞(R+) and r = |x|. (5.19) becomes

−f ′′(r) − m − 1

r
f ′(r) + k2f (r) = 0. (5.20)

Set f (r) = a(r)g(r). Plugging this in (5.20) and setting the coefficient of g′(r) equal zero
gives

2a′ + m − 1

r
a = 0. (5.21)

Take

a(r) = r− m−1
2 .

Then

f (r) = r− m−1
2 g(r)

and (5.20) takes the form

g′′(r) − k2

(

1 + O

(
1

r2

))

g(r) = 0. (5.22)

Now using classical results on the asymptotics of the solutions of the Schrödinger operator
(see [4]), we discover that

g±(r) = Ce±kr (1 + o(1)). (5.23)

Hence the asymptotics of the solutions of (5.20) are

f±(r) = Cr
− m−1

2 e±kr (1 + o(1)). (5.24)

Since E(x) = f (|x|) ∈ S ′(R�), we conclude that f = f− and the result follows. �

Theorem 8 Let � be any exterior domain in R
� containing a neighborhood of infinity with

smooth internal boundary. Let the potential V (x) ∈ C∞(�) and satisfy

lim|x|→∞
infV (x) ≥ E (5.25)
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and let ϕ be a smooth solution of the problem

{
(−� + V (x))ϕ = λϕ in �,

ρ = ψ on ∂�
(5.26)

where λ < E and ϕ is a smooth function on ∂�. Then the following estimate holds:

|ϕ(x)| ≤ Cεe
−√

(a−λ−ε)/2|x| (5.27)

for any ε > 0.

The proof of this theorem uses the following lemma.

Lemma 4 (A maximum principle) Let k > 0, � an open subset of R
�, and u ∈ C2(�) a

function such that
(−� + k2

)
u = f ≤ 0 in �. (5.28)

Then u cannot have a positive maximum in �.

Proof If x0 ∈ � is a maximum point and u(x0) > 0, then

�u(x0) ≤ 0, (5.29)

this contradicts (5.28). �

Proof of Theorem 8 Let ϕ be a real solution of the equation

Hϕ = λϕ in �, (5.30)

where

H = −� + V (x).

We obviously have

�
(
ϕ2
)= 2�ϕ · ϕ+2 |∇ϕ|2 (5.31)

Hϕ = λϕ gives −�ϕ = (λ − V (x))ϕ which implies

�
(
ϕ2
)= 2 (λ − V (x))ϕ2 − 2 |∇ϕ|2 (5.32)

adding 2(b − λ)ϕ2 on both sides of this equality, we obtain

[−�+2(b − λ)]ϕ2 = −2 (V (x) − b)ϕ2 − 2 |∇ϕ|2 . (5.33)

Choosing λ < b < E the right hand side of (5.33) is non-positive for |x| large enough. Now
set

u(x) = ϕ2(x) − ME(x) (5.34)

where E(x) is the fundamental solution of the operator −� + k2 with

k =√
2(b − λ). (5.35)



380 A. Lo

Choose R so large that E(x) > 0 and V (x) > b for |x| > R. Now choose M so large that
u(x) < 0 on {x ∈ � : |x| = R}. We shall prove that

u(x) ≤ 0 (5.36)

on {x ∈ � : |x| = R} from which the theorem will follow. Substracting from (5.33) the
equation

[−�+2(b − λ)]ME(x) = 0, (5.37)

we find that (5.28) is satisfied for u(x) with

f = −2 (V (x) − b)ϕ2 − 2 |∇ϕ|2 , for |x| ≥ R. (5.38)

We then apply the maximum principle in each connected component of the subset

�R,ρ = {
x ∈ � : R ≤ |x| ≤ ρ

}
(5.39)

to the function

uε(x) =
∫

u(x − y)ηε(y)dy (5.40)

where ηε(x) = ε−mη( x
ε
) and η(x) is the mollifier. Recall that η(x) is given by

η(x) =
{

e
−( 1

1−|x|2 )
if |x| ≤ 1,

0 otherwise.

We indeed have
(−� + k2

)
uε = f ε =

∫

f (x − y)ηε(y)dy ≤ 0 (5.41)

u ∈ L1(R�) implies that uε(x) → 0 as |x| → ∞. Set

Mρ(ε) = max{x∈�:|x|=ρ} |uε(x)| (5.42)

since u(x) < 0 for x ∈ {x ∈ � : |x| = R}, using the fact that uε(x) ⇒ u(x) as ε → 0 on
{x ∈ � : |x| = R}, we conclude that uε(x) < 0 on {x ∈ � : |x| = R} for small ε. It then
follows from Lemma 4 that

uε(x) ≤ Mρ(ε) for x ∈ �R,ρ. (5.43)

Letting ρ → ∞, we get

uε(x) ≤ 0 for x ∈ � and |x| ≥ R. (5.44)

Now since

uε(x) ⇒ u(x) as ε → 0 (5.45)

in every relatively compact subset of {x ∈ � : |x| ≥ R}, it follows that

u(x) ≤ 0 for x ∈ {x ∈ � : |x| ≥ R
}
. (5.46)

�
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Corollary 2 If V (x) → ∞ as |x| → ∞, then for any eigenfunction ϕ of the boundary value
problem in Theorem 8 satisfies, the following estimate

|ϕ(x)| ≤ Cae
−a|x| (5.47)

where a > 0 is arbitrary and Ca > 0.

Theorem 9 (Helffer-Sjöstrand [7]) The L2-solution u of

(E)

{
(−� + x2

4 − m
2 + 1)u = 0 in Bc,

u = ϕ on ∂B (in the trace sense)
(5.48)

satisfies

u(x) = e
− x2

4 |x|−1/2 h(x) (5.49)

where

∂βh(x) = O(|x|−|β|) ∀β ∈ N
m. (5.50)

Using the change of variable v = e�/2u and applying this theorem to each component
of u, we obtain

Corollary 3 The L2-solution v of the system

(−� + ∇� · ∇)v + Hess�v = ∇g in R
� (5.51)

satisfies

lim
|x|→∞

∂αv(x) = 0 ∀α ∈ N
m. (5.52)

Proof of Theorem 9 (Sjöstrand [11]) Denote by

K : C∞(∂B) → C∞ (Bc) (5.53)

the operator that assigns each boundary value the corresponding solution. Since by Theo-
rem 8

lim|x|→∞
u(x) = 0, (5.54)

the maximum principle implies that K is monotone increasing. Indeed, Kg ≥ 0 whenever
g ≥ 0. This implies that the operator K is increasing and that Kg ≤ supg, if supg ≥ 0,
Kg ≥ infg if infg ≤ 0. Let

u0 = K1 (≥ 0) (5.55)

which is a radial function i.e.

u0(x) = u0(|x|), (5.56)

with
[

−∂2
r −

(
m − 1

r

)

∂r + r2

4
− m

2
+ 1

]

u0(r) = 0, u0(R) = 1. (5.57)
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We perform the Liouville’s transformation

u0 = r−(m−1)/2f (r) (5.58)

to get rid of the term involving ∂r . We finally get

[

−∂2
r + r2

4
− (m − 1) (m − 3)

4r2
+ 1 − m

2

]

f (r) = 0, f (R) = R(m−1)/2 (5.59)

which we write in the form

[−∂2
r + V (r)

]
f (r) = m

2
f (r), f (R) = R(m−1)/2, (5.60)

where

V (r) = r2

4
− (m − 1) (m − 3)

4r2
+ 1 → ∞ as r → ∞. (5.61)

Since

∫ ∞

r0

|V ′(r)|2
|V (r)|5/2

dr < ∞ and
∫ ∞

r0

|V ′′(r)|2
|V (r)|3/2

dr < ∞ for some large r0. (5.62)

Classical results on Schrödinger operators (see [1]) allow us to get the asymptotics of f (r)

as following:

f±(r) = Cr−1/2e
± r2

4 (1 + o(1)). (5.63)

Now since u0 → 0 as r → ∞, we conclude that

f (r) = f−(r) = Cr−1/2e
− r2

4 (1 + o(1)). (5.64)

Hence

u0(r) = Cr
− m

2 e
− r2

4 (1 + o(1)) > 0. (5.65)

Next, we write

u(x) = j (x)u0(r). (5.66)

Let g ∈ C∞(∂B) be strictly positive everywhere and let

u = Kg. (5.67)

Denote by gmin = infg and gmax = supg. We obviously have

gminu0 ≤ u ≤ gmaxu0. (5.68)

Hence,

j (x) = u(x)

u0(x)
(5.69)
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is bounded. Next, we perform a change in polar coordinates (r, θ) by setting x = rθ . Under
this change of coordinates, the operator

−� + x2

4
− m

2
+ 1 (5.70)

becomes

−∂2
r −

(
m − 1

r

)

∂r + r2

4
− m

2
+ 1 − r−2�θ (5.71)

where �θ is the Laplace-Beltrami operator on Sm−1. Since the operator −� + x2

4 − m
2 + 1

is rotationally invariant and ∂α
θ u takes continuously the value ∂α

θ g on ∂B, using the fact that
each ∂α

θ u arises as infinitesimal rotation, we conclude that for every α, ∂α
θ u is a solution of

the boundary value problem (E) (under the change of coordinates) with

∂α
θ u = ∂α

θ g on ∂B. (5.72)

Therefore,

∂α
θ u = O(1)e

− r2

4 , ∀α ∈ N
m, (5.73)

which implies

∂α
θ j = O(1), ∀α ∈ N

m. (5.74)

Now we need to control some radial derivative of j. In polar coordinates, we have

[

−∂2
r −

(
m − 1

r

)

∂r + r2

4
− m

2
+ 1 − r−2�θ

]

u0(r) = 0. (5.75)

Write
[

−∂2
r −

(
m − 1

r

)

∂r + r2

4
− m

2
+ 1 − r−2�θ

]

j (r, θ)u0(r) = 0. (5.76)

Using (5.57) and the product rule of differentiation, (5.76) becomes

[

∂2
r +

[

2
∂ru0

u0
+
(

m − 1

r

)]

∂r

]

j = −r−2�θj. (5.77)

Here

∂α
θ

(
r−2�θj

)= O(r−2), ∀α ∈ N
m, (5.78)

and

∂ru0

u0
= − r

2
+ O

(
1

r

)

. (5.79)

Thus, (5.77) can be written as

[

∂2
r +

[

−r + O

(
1

r

)]

∂r

]

j = O(r−2). (5.80)
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Let

ϕ(r) = r + O

(
1

r

)

. (5.81)

We have
[
∂r − f (r)

]
∂rj = O(r−2). (5.82)

Let

F(r) =
∫ r

1
f (t)dt ∼ r2. (5.83)

Solving (5.82), we get

∂rj = −
∫ ∞

r

eF(r)−F(s)
[
O(s−2)

]
ds + CeF(r). (5.84)

Since

F(r) − F(s) ∼ r2 − s2 ≤ 2r(r − s) for s ≥ r, (5.85)

∂rj cannot tend to ±∞ when r → ∞, we conclude that C = 0 and

∂rj = −
∫ ∞

r

eF(r)−F(s)
[
O(s−2)

]
ds = O(r−3). (5.86)

More generally, since ∂α
θ j is a solution of (5.82) with right hand side

−r−2∂α
θ (�θj) = O(r−2), (5.87)

using the same argument as above with j replaced by ∂α
θ j, we have

∂r∂
α
θ j = O(r−3). (5.88)

Now differentiating
[
∂r − f (r)

]
∂r∂

α
θ j = O(r−2) (5.89)

with respect to r, we get
[
∂r − f (r)

]
∂2

r ∂α
θ j = O(r−3), (5.90)

using again the same argument as before, we get

∂2
r ∂α

θ j = O(r−4) (5.91)

continuing this way, we finally get

∂k
r ∂α

θ j = O(r−2−k) k = 1,2, . . . . (5.92)

Going back to x-coordinates, we get

∂αj (x) = O(|x|−|α|), ∀α ∈ N
m,α �= 0. (5.93)

�
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6 Weighted Estimates for the Decay of Correlation

In this section, we propose to get estimates suitable for obtaining the decay of the correlation
functions. We shall first analyze the case where 
 and the source term g are compactly
supported

6.1 The Compactly Supported Case

We shall assume that � is given by

�(x) = ��(x) = x2

2
+ 
(x), x ∈ R

�, (6.1)

where

|∂α∇
| ≤ Cα, ∀α ∈ N
|�|,

(6.2)
Hess�(x) ≥ δ for some 0 < δ < 1.

Again g will denote a smooth function on R
	 with lattice support Sg = 	. We shall identify

g with g̃ defined on R
� and shall assume that

|∂α∇g| ≤ Cα ∀α ∈ N
|	|. (6.3)

In addition, we shall momentarily assume that 
 is compactly supported in R
� and g is

compactly supported in R
	 but these assumptions will be relaxed later on.

Assume also that there exists δ0 ∈ (0,1) such that

M−1 Hess�(x)M ≥ δ0 (in the sense of (1.11)) (6.4)

where M is the diagonal matrix

M = (
δij e

κd(i,Sg)
)
i,j∈�

for some κ > 0. Define

|x|2,ρ :=
(
∑

i∈�

ρ(i)2x2
i

)1\2

.

Let f be the solution of the equation
{

−�f + ∇� · ∇f = g − 〈g〉
L2(μ�)

,

〈f 〉L2(μ�) = 0.

Let t1 = (ti)i ∈ R
�. We have

〈∇ (∇� · ∇f ) , t1〉 =
∑

i,k∈�

(
fxi

�xixk
tk + �xi

fxixk
tk
)

= 〈∇f,Hess�t1〉 + ∇� · ∇ 〈∇f, t1〉 . (6.5)

On the other hand,

〈∇ (�f ) , t1〉 = � 〈∇f, t1〉 .
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We therefore have

〈∇g, t1〉 = (∇� · ∇ − �) 〈∇f, t1〉 + 〈∇f,Hess�t1〉 . (6.6)

Because ∇f (x) → 0 as |x| → ∞, we consider a point x0 at which

|∇f (x)|2,ρ =
(
∑

i∈�

ρ(i)2f 2
xi
(x)

)1\2

is maximal. If M is the diagonal matrix

M = (
δijρ(i)

)

we have

〈∇g,Mt1〉 = (∇� · ∇ − �) 〈∇f,Mt1〉 + 〈∇f,Hess�Mt1〉 . (6.7)

Now choose

t1 = (
ρ(i)fxi

(x0)
)
i∈�

.

We need the following lemma.

Lemma 5 Under the assumptions and notations above, the function

x �−→ 〈∇f (x),Mt1〉

achieves its maximum value at x0.

Proof Let

ζ(x) = 〈∇f (x),Mt1〉 (6.8)

and

π(x) = |∇f (x)|22,ρ . (6.9)

Again by the maximum principle, the function ζ(x) achieves its maximum at some x̄0 ∈ R
�.

It is easy to see that x0 is a critical point for ζ(x). Moreover, for any a ∈ R
�, we have

〈a,Hessπ(x0)a〉

= 2 〈a,Hess ζ(x0)a〉 + 2
∑

j,k

(∑

i

fxixj
(x0)fxixk

(x0)ρ(i)2

)

ajak

= 2 〈a,Hess ζ(x0)a〉 + 2
∑

i

ρ(i)2

(∑

j

fxixj
(x0)

)2

. (6.10)

Because 〈a,Hessπ(x0)a〉 < 0, we must have 〈a,Hess ζ(x0)a〉 < 0 for any a ∈ R
�. Thus, x0

is a local maximum for ζ(x). Moreover, on one hand, we have

ζ(x̄0) ≥ ζ(x0) = π(x0). (6.11)
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One the other hand, Cauchy-Schwartz gives

ζ(x̄0) ≤ [π(x̄0)]
1/2 [π(x0)]

1/2

≤ π(x0). (6.12)

These last two above inequalities imply

ζ(x̄0) = ζ(x0) (6.13)

and the result follows. �

Now using Lemma 5 above, we have

(∇� · ∇ − �) 〈∇f (x0),Mt1〉 ≥ 0.

This, then implies

〈∇g(x0),Mt1〉 ≥ 〈∇f (x0),Hess�(x0)Mt1〉
= 〈

M∇f (x0),M
−1 Hess�(x0)Mt1

〉

= 〈
t1,M

−1 Hess�(x0)Mt1
〉

≥ δ0 |∇f (x0)|22,ρ .

Thus

|∇f (x0)|22,ρ ≤ 1

δ0
〈M∇g(x0), t1〉

= 1

δ0
‖M∇g(x0)‖ |∇f (x0)|2,ρ .

We have almost proved the following proposition.

Proposition 4 Let g be a smooth function satisfying

|∂α∇g| ≤ Cα ∀α ∈ N
|	| (6.14)

and � = x2

2 + 
(x) satisfies (1.9)–(1.11). Assume also that both g and 
 are compactly
supported as above. If f is the unique C∞-solution of the equation

{
−�f + ∇� · ∇f = g − 〈g〉

L2(μ�)
,

〈f 〉L2(μ�) = 0,

then
∑

i∈�

f 2
xi
(x)e2κd(i,Sg) ≤ C ∀x ∈ R

�

C and κ are positive constants. C that could possibly depend on the size of the support of g

but does not depend on � and f .
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Proof If

|∇f (x0)|2,ρ = 0 (6.15)

there is nothing to prove otherwise we have

(∑

i∈�

f 2
xi
(x0)ρ

2(i)

)1/2

≤ 1

δ0

(∑

i∈�

g2
xi
(x0)ρ

2(i)

)1/2

= 1

δ0

(∑

i∈Sg

g2
xi
(x0)e

2κd(i,Sg)

)1/2

≤ 1

δ0

(∑

i∈Sg

g2
xi
(x0)

)1/2

and the result follows. �

Corollary 4 Let g and h be smooth functions on R
	, and R

	′
where 	 and 	′

� � with
	∩	′ = ∅ denote respectively the support of g and h and assume that g and h satisfy (1.10).
Then under the assumptions of Proposition 4, we have

|cov(g,h)| ≤ Ce−κd(Sh,Sg) (6.16)

where C and κ are positive constants that do not depend on �, but possibly dependent on
the size of the supports of g and h.

6.2 Relaxing the Compact Support Assumptions

We propose now to relax the assumptions of compact support made previously on 
 and g.
As before, let M be the diagonal matrix

M = (
δijρ(i)

)

where ρ is given by

ρ (i) = eκd(i,Sg) (6.17)

and

M−1 Hess�(x)M ≥ δ0 for some 0 < δ0 < 1 in the sense of (1.11) (6.18)

for every M as above. Next, we propose to generalize the results in Proposition 4 without
the assumptions of compact support on 
 and g by means of a family of cutoff functions.
Let us introduce as in [7] a family cutoff functions

χ = χε (6.19)

(ε ∈ [0,1]) in C∞
0 (R) with value in [0,1] such that

{
χ = 1 for |t | ≤ ε−1,
∣
∣χ(k)(t)

∣
∣≤ Ck

ε

|t |k for k ∈ N.
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We could take for instance

χε(t) = f (ε ln |t |)
for a suitable f . We then introduce


ε(x) = χε(|x|)
, x ∈ R
� (6.20)

and

gε(x) = χε(|x|)g, x ∈ R
	. (6.21)

Recall that

−�f + ∇� · ∇f = g − 〈g〉
L2(μ�)

(6.22)

which implies

(−� + ∇� · ∇) ⊗ v + Hess�v = ∇g (6.23)

where

v = ∇f.

Under the transformations

v = e−�/2u and q = e−�/2∇g

we have
(

−�+|∇�|2
4

− ��

2

)

⊗ Iu + Hess�u = q in R
�. (6.24)

We first verify that the assumptions on 
 and g are satisfied by 
ε(x) and gε(x). Namely

|∂α∇
| ≤ Cα, ∀α ∈ N
|�|, (6.25)

|∂α∇g| ≤ Cα, ∀α ∈ N
|�|, (6.26)

and

M−1 Hess�M ≥ δ0 > 0, 0 < δ0 < 1 (6.27)

M shall still denote the diagonal matrix

M = (
δijρ(i)

)
i,j∈�

where ρ is a weight function on R
� satisfying

e−λ ≤ ρ (i)

ρ(j)
≤ eλ, if i ∼ j for some λ > 0. (6.28)

Using

M−1 Hess
M ≥ δ0 − 1,

we obtain immediately

M−1 Hess
ε(x)M ≥ (δ0 − 1)χε(|x|) − Cε (6.29)
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for all ε and some constant C. To see this, let us first write

χε = χ and r = |x|

so that


ε(x) = χ(r)
(x),

ρ(j)

ρ(i)

εxi xj

= 1

r

ρ(j)

ρ(i)

(
δij − xixj

r2

)
χ ′(r)
 + ρ(j)

ρ(i)

xixj

r2
χ ′′(r)


+ρ(j)

ρ(i)

xj

r
χ ′(r)
xj

+ ρ(j)

ρ(i)
χ(r)
xixj

.

Let a ∈ R
�,

〈
M−1 Hess
ε(x)Ma,a

〉

=
(

1

r

∑

i

a2
i − 1

r3

∑

i,j

ρ(j)

ρ(i)
aiaj xixj

)

χ ′(r)


+ 1

r2
χ ′′(r)


∑

i,j

ρ(j)

ρ(i)
aiaj xixj + 1

r
χ ′(r)

∑

i,j

ρ(j)

ρ(i)
aiaj xj
xj

+χ(r)
∑

i,j

ρ(j)

ρ(i)
aiaj
xixj

≥ −2
a2

r

∣
∣χ ′(r)
(x)

∣
∣− a2

∣
∣χ ′′(r)
(x)

∣
∣− C

∣
∣χ ′(r)

∣
∣a2 + (δ0 − 1)χ(r)a2

≥ [
(δ0 − 1)χ(r) − εC

]
a2.

We conclude that

M−1 Hess
ε(x)M ≥ (δ0 − 1)χ(r) − εC

for all ε > 0.

It follows that

M−1 Hess�ε(x)M ≥ δ0 − Cε. (6.30)

Now with δ0 replaced by δ′
0 = δ0 − Cε, we see that

M−1 Hess�ε(x)M ≥ δ′
0, 0 < δ′

0 < 1 (6.31)

for ε small enough. (Notice that ε is possibly �-depend.) It remains to check the assump-
tions on gε and 
ε. To see that

|∂α∇gε| ≤ C +Oα,�(ε), ∀α ∈ N
|	|, (6.32)

we have

gε(x) = χε(r)g(x), x ∈ R
	.
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Again let |α| ≥ 1, using Leibniz’s formula, we have

|∂αgε| ≤
∑

β≤α

(
α

β

)

∂βχε(r)∂
α−βg

= |∂αg| + |g∂αχε(r)| +
∑

β<α
β �=0

(
α

β

)
∣
∣∂βχε(r)∂

α−βg
∣
∣ .

With the assumption g(0) = 0, we write

|g(x)| ≤
∫ 1

0

∑

j∈�

∣
∣xjgxj

(sx)
∣
∣ds

≤
∫ 1

0

(∑

j∈�

x2
j

)1/2(∑

j∈�

g2
xj

(sx)

)1/2

ds

≤ Cgr (6.33)

again using the fact that

r∂αχε(r) = Oα(ε),

we get

|g∂αχε(r)| = Oα,�(ε). (6.34)

Observe also that
∑

β<α
β �=0

(
α

β

)
∣
∣∂βχε(r)∂

α−βg
∣
∣= Oα(ε) (6.35)

it then immediately follows from the assumption on g that

|∂α∇gε| ≤ Cα +Oα,�(ε), ∀α ∈ N
|	|. (6.36)

Similarly, one can prove that

|∂α∇
ε| ≤ Cα +Oα,�(ε), ∀α ∈ N
|�|. (6.37)

Thus 
ε and gε are compactly supported and satisfy all the conditions that were previously
required on 
 and g. If uε denotes the family of solutions corresponding to the family
of data �ε and gε , one can see that uε converges to u in C∞. The proof which based on
regularity estimates is given in detail in [7]. Consequently, the family of solution vε = e�ε uε

converges to v in C∞.

Proposition 5 If g(0) = 0, then Proposition 4 holds without the assumptions of compact
support on 
 and g.

Proof Using Proposition 4 we have

(
∑

i∈�

f 2
εxi

(x)e2κd(i,Sg)

)1/2

≤ C
∣
∣Sg

∣
∣1/2 +O�(ε) ∀x ∈ R

�.
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The result follows by taking the limit as ε → 0. �

Corollary 5 If g = xi and h = xj we get

∣
∣Cor�(i, j)

∣
∣≤ Ce−κd(i,j).

7 The d-Dimensional Kac Model

An example of a non-quadratic model satisfying the assumptions above is given by

�(x) = x2

2
− 2

∑

i∼j

ln cosh

[√
β

2

(
xi + xj

)
]

with β > 0 small enough.
Let us now verify that

��(x) = x2

2
− 2

∑

i∼j

ln cosh

[√
β

2

(
xi + xj

)
]

satisfies the required assumptions,


xi
= −2

∑

j :,j∼i

√
β

2 sinh[
√

β

2 (xi + xj )]
cosh[

√
β

2 (xi + xj )]
,


xixk
=

⎧
⎪⎪⎨

⎪⎪⎩

−β
∑

j :,j∼i

1

cosh2[
√

β
2 (xi+xj )]

if k = i,

− β

cosh2[
√

β
2 (xi+xk)]

if k ∼ i,

0 otherwise.

It then follows that

∣
∣
xi

∣
∣ ≤ 4d

√
β

2
,

∣
∣
xixi

∣
∣ ≤ 2dβ,

and
∣
∣
xixk

∣
∣≤ β if k ∼ i.

Similarly, using the properties of cosh and sinh and the fact that sinh t ≤ cosh t for all t

one can see that all derivatives of order greater than or equal to one are bounded. Now we
propose to check that for β small enough, the Kac Hamiltonian satisfies

M−1 Hess�(x)M ≥ δ0

for some δ0 ∈ (0,1) and M as above.
We need the following lemma.
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Lemma 6 (Schur’s lemma—the R and C bound) For each rectangular array

(cij )1≤i≤m
1≤j≤n

and each pair of sequence (xi)1≤i≤m and (yj )1≤j≤n we have the bound

∣
∣
∣
∣
∣

m∑

i=1

n∑

j=1

cij xiyj

∣
∣
∣
∣
∣
≤ √

RC

(
m∑

i=1

|xi |2
)1/2( n∑

j=1

∣
∣yj

∣
∣2
)1/2

where R and C are the row sum and column sum maxima defined by

R = max
i

n∑

j=1

∣
∣cij

∣
∣ and C = max

j

m∑

i=1

∣
∣cij

∣
∣ .

This bound is known as Schur’s lemma, but, ironically, it may be the second most fa-
mous result with this name. The Schur’s decomposition lemma for n × n matrices is also
known under this name. Nevertheless, this inequality is surely the single most commonly
used tool for estimating a quadratic form. Going back to the example, we have for any
a = (ai)i∈� ∈ R

�,

〈
M−1 Hess�Ma,a

〉

=
∑

i,j

�xixj

ρ(i)

ρ(j)
aiaj

=
∑

i

�xixi
a2

i +
∑

i∼j


xixj

ρ(i)

ρ(j)
aiaj

≥ (1 − 2dβ)a2 +
∑

i∼j


xixj

ρ(i)

ρ(j)
aiaj .

Now using the Schur’s lemma above, we have

∣
∣
∣
∣
∣
∣

∑

i∼j


xixj

ρ(i)

ρ(j)
aiaj

∣
∣
∣
∣
∣
∣
≤
∑

i,j

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)
aiaj

∣
∣
∣
∣

≤ √
RCa2

where

R = max
i

∑

j

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)

∣
∣
∣
∣

and

C = max
j

∑

i

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)

∣
∣
∣
∣ .
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To estimate R, observe that

∑

j

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)

∣
∣
∣
∣=

∣
∣
xixi

∣
∣+

∑

j :j∼i

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)

∣
∣
∣
∣ .

Now using the fact that

e−κ ≤ ρ(i)

ρ(j)
≤ eκ if i ∼ j

we have
∑

j

∣
∣
∣
∣
xixj

ρ(i)

ρ(j)

∣
∣
∣
∣≤ 2dβ + 2dβeκ .

Hence

R ≤ 2dβ (1 + eκ) .

Similarly, we have

C ≤ 2dβ (1 + eκ) .

Thus,

〈
M−1 Hess�Ma,a

〉 ≥ [
(1 − 2dβ) − 2dβ (1 + eκ)

]
a2

= [
1 − 2dβ (2 + eκ)

]
a2.

The result follows for β < 1
2d(2+eκ )

.

Hence, if

β <
1

4d

there exists κ > 0 such that M−1 Hess�M ≥ δ0 with 0 < δ0 < 1.

7.1 Physical Implications of the Result

The Kac model

�(x) = x2

2
− 2

∑

i∼j

ln cosh

[√
β

2

(
xi + xj

)
]

is a mean field model introduced by Marc Kac [9] in an effort to study rigorously certain
problems of phase transition and in particular to justify the van der Waals theory of liquid-
vapor transition. The exact model is analogous to the two dimensional Ising model and
constructed as follows:

Let J be an even positive Lipschitz function satisfying
∫

R

J (r)dr = 2.

Define the family {Jγ }γ>0 by

∀r ∈ R, Jγ (r) = γ J (γ r).
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The choice made by Kac in [9] consisted of

J (r) = e−|r|.

For a fixed γ > 0, one defines an interaction potential Jγ on Z
2 × Z

2 by

Jγ (k, l, k̃, l̃) = Jγ (k − k̃)J (l, l̃)

with

J (l, l̃) = δl,l̃ +
1

2

(
δl,l̃+1 + δl,l̃−1

)
.

Here δi,j is the Kronecker delta function.
Let � be a finite subset of Z

2; the Hamiltonian of the configuration σ� = (σi)i∈� ∈
{−1,1}� with boundary condition σ�c = (σi)i∈�c is given by

H�,γ (σ�/σ�c ) = −1

2

∑

i,j∈�

Jγ (i, j)σiσj −
∑

i∈�,j∈�c

Jγ (i, j)σiσj .

Kac showed in [9] that when

J (r) = e−|r|,

this model may be studied through the transfer operator

Km
γ = e− 1

2 γ q(x)eγ�me− 1
2 γ q(x),

where

γ q(x) = 1

2
tanh

(γ

2

) m∑

i=1

x2
i −

m∑

i=1

log cosh

[√
γβ

2
(xi + xi+1)

]

,

with the convention xm+1 = x1. He proved that when γ approaches 0, the behavior of the
system only depends on the Kac potential

q(x) =
m∑

i=1

x2
i

4
−

m∑

i=1

log cosh

[√
β

2
(xi + xi+1)

]

.

Thus by reducing the two dimensional problem into a one dimensional problem, M. Kac
showed that the critical temperature occurs at βc = 1

4 .

Our method allows the study of higher dimensional cases in the mean field approxima-
tion. We in fact proved the exponential decay of the two-point correlation function for the
higher dimensional mean field model when β < βc = 1

4d
. This justifies the existence of a

single phase when β < βc = 1
4d

. The expansion of this method to include the study of multi-
ple phases is more difficult and is a subject of current investigation. However, knowing that
in the 1 + 1 dimensional case the critical point of the exact model occurs at βc = 1

4 , we may
conjecture that in the d + 1 dimensional case, the critical point is at βc = 1

4d
.
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